❌ ELT vs. ETL ❌ Die Unterschiede sowie Vor- und Nachteile der Data-Warehouse-Operationen ETL und ELT ❗

ETL vs. ELT: Unsere Zusammenfassung, Sie urteilen!
Vollständige Offenlegung: Da dieser Artikel von einem ETL-zentrierten Unternehmen verfasst wurde, das sich stark auf die Manipulation großer Datenmengen außerhalb von Datenbanken spezialisiert hat, wird das Folgende vielen nicht objektiv erscheinen. Nichtsdestotrotz soll er dennoch Denkanstöße geben und eröffnet das Wort zur Diskussion.
Seit ihren Anfängen wurden Data-Warehouse-Architekten (DWA) mit der Aufgabe betraut, ein Data-Warehouse mit Daten unterschiedlicher Herkunft und Formatierung zu erstellen und zu bestücken. Aufgrund des dramatischen Wachstums des Datenvolumens stehen dieselben DWAs vor der Herausforderung, ihre Datenintegrations- und Staging-Operationen effizienter zu implementieren. Die Frage, ob die Datentransformation innerhalb oder außerhalb der Zieldatenbank erfolgt, ist wegen der damit verbundenen Leistung, Bequemlichkeit und finanziellen Konsequenzen zu einer kritischen Frage geworden.
Bei ETL-Operationen (Extrahieren, Transformieren, Laden) werden Daten aus verschiedenen Quellen extrahiert, separat transformiert und in eine DW-Datenbank und möglicherweise andere Ziele geladen. Bei ELT werden die Extrakte in die Single-Staging-Datenbank eingespeist, die auch die Transformationen verarbeitet.
ETL ist nach wie vor weit verbreitet, weil der Markt mit bewährten Akteuren wie Informatica, IBM, Oracle – und mit IRI Voracity, das FACT (Fast Extract), CoSort- oder Hadoop-Transformationen und Bulk-Loading in derselben Eclipse-GUI kombiniert, um Daten zu extrahieren und zu transformieren – floriert. Dieser Ansatz verhindert die Belastung von Datenbanken, die für die Speicherung und den Abruf (Abfrageoptimierung) konzipiert sind, mit dem Overhead einer groß angelegten Datentransformation.
Mit der Entwicklung neuer Datenbanktechnologie und Hardwareanwendungen wie Oracle Exadata, die Transformationen "in a box" verarbeiten können, kann ELT jedoch unter bestimmten Umständen eine praktische Lösung sein. Und die Isolierung der Staging- (laden) und der semantischen (transformieren) Schicht hat spezifische Vorteile. Ein zitierter Vorteil von ELT ist die Isolierung des Belastungsprozesses vom Transformationsprozess, da sie eine inhärente Abhängigkeit zwischen diesen Phasen beseitigt.
Wir stellen fest, dass der ETL-Ansatz von IRI sie ohnehin isoliert, da Voracity die Daten im Dateisystem (oder HDFS) in Etappen anordnet. Jeder für die Datenbank gebundene Datenklumpen kann vor dem (vorsortierten) Laden extern erfasst, bereinigt und transformiert werden. Dies entlastet die Datenbank (sowie BI-/Analyse-Tools usw.) von der Last groß angelegter Transformationen.
Datenmengen und Budgets sind oft ausschlaggebend dafür, ob ein DWA eine ETL- oder ELT-Lösung entwickeln sollte. In seinem IT-Toolbox-Blog-Artikel "So What Is Better, ETL or ELT?" stellt Vincent McBurney seine Vor- und Nachteile beider Ansätze dar, die unten aufgelistet sind mit jeweils einer typische Antwort, die IRI ETL-orientierte Benutzer auf den Punkt bringen:
Vorteile ETL:
Nachteile ETL:
Vorteile ELT:
Nachteile ELT:
In der Folge entstehen hybride Architekturen wie ETLT, TELT und sogar TETLT, die versuchen, die Schwächen beider Ansätze zu beheben. Aber diese scheinen den bereits so belasteten Prozessen zusätzliche Komplexitätsebenen hinzuzufügen. Es gibt keinen wirklichen Königsweg, und viele Datenintegrationsprojekte scheitern unter dem Gewicht von SLAs, Kostenüberschreitungen und Komplexität.
Aus diesen Gründen wurde IRI Voracity entwickelt, um Daten über das Programm CoSort SortCL in bestehende Dateisysteme oder Hadoop-Fabrics ohne Neucodierung zu integrieren. Voracity ist die einzige ETL-orientierte (aber auch ELT-unterstützende) Plattform, die beide Optionen für externe Datentransformationen bietet. Neben einem überlegenen Preis-Leistungs-Verhältnis bei der Datenbewegung und -manipulation beinhaltet Voracity:
Weltweite Referenzen: Seit über 40 Jahren nutzen unsere Kunden wie die NASA, American Airlines, Walt Disney, Comcast, Universal Music, Reuters, das Kraftfahrtbundesamt, das Bundeskriminalamt, die Bundesagentur für Arbeit, Rolex, Commerzbank, Lufthansa, Mercedes Benz, Osram,.. aktiv unsere Software für Big Data Wrangling und Schutz! Sie finden viele unserer weltweiten Referenzen hier und eine Auswahl deutscher Referenzen hier.
Partnerschaft mit IRI: Seit 1993 besteht unsere Kooperation mit IRI (Innovative Routines International Inc.) aus Florida, USA. Damit haben wir unser Portfolio um die Produkte CoSort, Voracity, DarkShield, FieldShield, RowGen, NextForm, FACT und CellShield erweitert. Nur die JET-Software GmbH besitzt die deutschen Vertriebsrechte für diese Produkte. Weitere Details zu unserem Partner IRI Inc. hier.
JET-Software entwickelt und vertreibt seit 1986 Software für die Datenverarbeitung für gängige Betriebssysteme wie BS2000/OSD, z/OS, z/VSE, UNIX & Derivate, Linux und Windows. Benötigte Portierungen werden bei Bedarf realisiert.
Wir unterstützen weltweit über 20.000 Installationen. Zu unseren langjährigen Referenzen zählen deutsche Bundes- und Landesbehörden, Sozial- und Privatversicherungen, Landes-, Privat- und Großbanken, nationale und internationale Dienstleister, der Mittelstand sowie Großunternehmen.
JET-Software GmbH
Edmund-Lang-Straße 16
64832 Babenhausen
Telefon: +49 (6073) 711-403
Telefax: +49 (6073) 711-405
https://www.jet-software.com